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iconderoga, and she’s  now 97 percent aware  of a 
ge: that the basic uniform for soldiers  in  those 

ear,  plus a hat so that no  one could  complain 
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nsidering the lack  of rifling,  precision  parts, 
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s only  because the wind helped. I think the 
lead in the air that some of it was bound to 

hit something; preferably, but  not necessarily, the enemy. 
Nowadays, of course, we have automatic weapons that allow a teenager  to 
singlehandedly defeat the  entire U.S. Army, not to mention so-called “smart” bombs, 
which are smart in the sense that they  can  seek out  and empty a taxpayer’s  wallet 
without being detected by radar.  There’s an obvious  lesson here about progress, 
which I leave  you  to deduce for yourselves. 
Here’s the same  lesson, in another form. Ten  years ago, we had a slow processor, the 
8088, for which it was  devilishly hard to  optimize, and for which there was no good 
optimization documentation available. Now  we  have a processor, the 486, that’s 50 to 
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100 times faster than  the 8088-and for which there is no good  optimization  docu- 
mentation available. Sure,  Intel provides a few tidbits on  optimization  in  the back  of 
the i486 Microprocessor  Programmer’s  Reference Manual, but, as I discussed in  Chapter 
12, that  information is both  incomplete  and  not  entirely  correct. Besides, most as- 
sembly language  programmers  don’t  bother to read Intel’s manuals (which are 
extremely informative and well done,  but only  slightly more  fun  to  read  than  the 
phone  book),  and go  right  on  programming  the 486 using outdated 8088 optimiza- 
tion  techniques, blissfully unaware of a new and heavily mutated  generation of 
cycle-eaters that  interact with their  code  in ways undreamt of even on  the 386. 
For example,  consider how Terje Mathisen doubled  the  speed of  his wordcounting 
program  on  a 486 simply by shuffling  a  couple of instructions. 

486 Pipeline  Optimization 
I’ve mentioned Terje Mathisen in my writings before. Terje is an assembly language 
programmer  extraordinaire,  and  author of the  incredibly fast publicdomain word- 
counting  program WC (which comes complete with source  code; well worth a  look, 
if  you want  to see what real4 fast code looks like). Terje’s a  regular  participant  in  the 
ibm.pc/fast.code  topic  on Bix. In  a  thread titled “486 Pipeline  Optimization,  or 
TANSTATFC (There Ain’t No Such Thing As The Fastest Code),”  he  detailed  the 
following optimization to WC, perhaps  the  best  example of 486 pipeline optimiza- 
tion I’ve  yet seen. 
Terje’s inner  loop originally  looked something like the code in Listing 13.1. (I’ve taken a 
few liberties for illustrative purposes.) Of course, Terje unrolls this loop  a few times 
(128 times, to  be exact). By the way, in Listing 13.1 you’ll notice  that Terje counts  not 
only  words but also lines, at  a  rate of three  instructions  for every two characters! 

LISTING 1 3.1 11 3- 1 .ASM 
mov di.[bp+OFFSl : g e t   t h e   n e x t   p a i r   o f   c h a r a c t e r s  
mov b l  , [ d i  1 : g e t   t h e   s t a t e   v a l u e   f o r   t h e   p a i r  
add dx. [bx+8000hl  :increment  word  and l i n e   c o u n t  

: a p p r o p r i a t e l y   f o r   t h e   p a i r  

Listing 13.1 looks as tight as it  could  be, with just two one-cycle instructions,  one two- 
cycle instruction,  and  no  branches.  It is tight, but those  three  instructions actually 
take a  minimum of 8 cycles to execute, as  shown in Figure 13.1. The  problem is that 
DI  is loaded  just  before  being used to address memory, and  that costs 2 cycles  be- 
cause it  interrupts  the 486’s internal  instruction  pipeline. Likewise, BX is loadedjust 
before  being used to  address memory, costing another two cycles. Thus, this loop 
takes twice  as long as  cycle counts would seem to  indicate, simply because two regis- 
ters are  loaded immediately before  being  used,  disrupting  the 486’s pipeline. 
Listing 13.2 shows  Terje’s immediate response  to  these pipelining problems; he simply 
swapped the  instructions  that  load DI and BL. This one  change  cut  execution time 
per  character  pair  from  eight cycles to five  cycles! The load of BL  is  now separated by 
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M O V  D I , [BP+OFFS]  1 -cycle execution time 

1 
M O V  B L . C D I 1  

1 -cycle execution time, 
2-cycle pipeline  penalty because 
Dl was loaded  by the previous 
instruction and is used to 
address memory by this 
instruction 

v 2-cycle execution time, 
ADD DX,[BX+8000Hl 2-cycle pipeline  penalty because 

BX was loaded by the previous 
instruction and is used to 
address memory by this 
instruction 

M O V  DI . [BP+OFFSl  1 cycle execution time 

Cycle-eaters in the original WC. 
Figure 1 3.1 

one instruction from  the use of BX to address memory, so the pipeline penalty is 
reduced  from two cycles  to one cycle. The load of  DI  is also separated by one instruc- 
tion from  the use  of  DI to address memory (remember,  the  loop is unrolled, so the 
last instruction is followed by the first instruction),  but because the  intervening in- 
struction takes two cycles, there’s no penalty at all. 

Remembel; pipeline  penalties diminish  with  increasing  number of cycles, not in- p structions, between  the pipeline disrupter  and  the potentially aficted instruction. 

LISTING  13.2 11  3-2.ASM 
mov b l  , [ d i  1 ; g e t   t h e   s t a t e   v a l u e   f o r   t h e   p a i r  
mov di.[bp+OFFS] ; g e t   t h e   n e x t   p a i r   o f   c h a r a c t e r s  
add  dx.[bx+8000h] : i n c r e m e n t   w o r d   a n d   l i n e   c o u n t  

; a p p r o p r i a t e l y   f o r   t h e   p a i r  

At this point, Terje had nearly doubled  the  performance of  this code simply by  mov- 
ing  one instruction. (Note  that swapping the instructions also made  it necessary to 
preload DI at  the  start of the  loop; Listing 13.2 is not exactly equivalent to Listing 
13.1.) I’ll let Terje describe his next optimization in his own  words: 
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‘When I looked closely  as this, I realized that  the two cycles for  the  final ADD is just 
the sum of 1 cycle  to load  the  data  from memory, and  1 cycle to  add  it  to DX, so the 
code  could just as  well  have been written as  shown in Listing 13.3. The final break- 
through came when I realized that by initializing AX to  zero  outside  the  loop, I 
could  rearrange  it as  shown in Listing 13.4 and  do the final ADD DX- after  the 
loop.  This way there  are two single-cycle instructions between the first and  the  fourth 
line, avoiding all pipeline stalls, for  a  total  throughput of two cycles/char.” 

LISTING  13.3 11  3-3.ASM 
mov b l  , [ d i  1 ; g e t   t h e   s t a t e   v a l u e   f o r   t h e   p a i r  
mov di.[bp+OFFSl ; g e t   t h e   n e x t   p a i r   o f   c h a r a c t e r s  
mov ax. [bx+8000hl  ; i n c r e m e n t   w o r d   a n d   l i n e   c o u n t  
add  dx,ax ; a p p r o p r i a t e l y   f o r   t h e   p a i r  

LISTING  13.4 11  3-4.ASM 
mov b l  , [ d i  1 ; g e t   t h e   s t a t e   v a l u e   f o r   t h e   p a i r  
mov di.[bp+OFFSl ; g e t   t h e   n e x t   p a i r   o f   c h a r a c t e r s  
add  dx,ax ; i n c r e m e n t   w o r d   a n d   l i n e   c o u n t  

mov a x . [ b x + 8 0 0 0 h l   ; g e t   i n c r e m e n t s   f o r   n e x t   t i m e  
; a p p r o p r i a t e l y   f o r   t h e   p a i r  

I’d  like  to point  out two fairly remarkable things.  First, the single  cycle that Terje  saved in 
Listing 13.4 sped up his entire  word-counting  engine by  25 percent  or  more; Listing 
13.4 is  fully  twice  as  fast  as  Listing  13.1-all the  result of nothing  more  than  shifting 
an  instruction and splitting another  into two operations.  Second, Terje’s word-count- 
ing  engine  can process more  than  16 million characters per second on  a 486/33. 
Clever  486 optimization can pay  off big. QED. 

BSWAP: More Useful  Than You Might Think 
There  are only 3 non-system instructions  unique  to  the 486. None is earthshaking, 
but they  have their uses. Consider BSWAP. BSWAP does just what its name implies, 
swapping the bytes (not bits) of a 32-bit register  from one  end of the  register  to  the 
other, as  shown in Figure 13.2. (BSWAP can only  work  with  32-bit registers; memory 
locations and  l6bit registers are  not valid operands.)  The obvious  use of BSWAP is 
to  convert  data  from  Intel  format  (least significant byte first in memory,  also called 
Zittb endian) to Motorola format  (most significant byte first in memory, or big endian), 
like so: 

1 odsd 
bswap 
s t o s d  

BSWAP can also be useful for reversing the order of pixel bits from  a  bitmap so that 
they can  be  rotated 32 bits at  a time with an  instruction  such as ROR =,I. Intel’s 
byte ordering  for multiword values (least-significant byte first) loads pixels in the 
wrong order, so  far as word rotation is concerned,  but BSWAP can take care of that. 
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EAX before x , 
BSWAP 0 x 3 4   0 x 7 8  0 x 5  6 

Bit 3 1 Bit 0 

EAX after x 
BSWAP 0 x 5 6  0 x 1  2 0 x 3 4  

Bit 3 1 Bit 0 

BSWAP in operation. 
Figure 13.2 

As it turns out,  though, BSWAP is also  useful  in an unexpected way, having  to do with 
making efficient  use of the upper half  of  32-bit  registers. As any  assembly language 
programmer knows, the x86 register set is too small; or, to  phrase  that another way, it 
sure would  be nice if the register set were  bigger. As any 386/486 assembly language 
programmer knows, there  are many  cases in which 16 bits  is  plenty.  For example, a 
16-bit  scan-line counter generally does  the trick  nicely in a video  driver,  because 
there  are very few video  devices  with more  than 65,535 addressable scan  lines.  Com- 
bining these two observations  yields the obvious conclusion that  it would be  great if 
there were some way to  use the  upper  and lower 16 bits  of selected 386  registers  as 
separate 16-bit  registers,  effectively increasing the available  register  space. 
Unfortunately, the x86 instruction set doesn’t provide  any way to  work  directly  with 
only the  upper half  of a 32-bit  register. The next best solution is to rotate  the register 
to give  you  access in the lower 16 bits to  the half  you need at any particular time, with 
code  along  the lines of that in Listing  13.5.  Having  to rotate  the 16-bit  fields into 
position  certainly  isn’t  as good as  having direct access  to the  upper half, but surely 
it’s better than having  to get  the values out of  memory,  isn’t it? 

LISTING  13.5 11 3-5.ASM 
mov c x , [ i n i t i a l s k i p l  
s h l   e c x . 1 6   ; p u t   s k i p   v a l u e   i n   u p p e r   h a l f  o f  E C X  
mov c x , l O O   ; p u t   l o o p   c o u n t   i n  C X  
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1 ooptop:  

r o r   e c x . 1 6  :make s k i p   v a l u e   w o r d   a c c e s s i b l e   i n  C X  
add   bx .cx   : sk ip  BX ahead 
i n c   c x   : s e t   n e x t   s k i p   v a l u e  
r o r  ecx .16   :pu t  1 oop  count i n  C X  
dec   cx   :count  down l o o p  
j n z  1 ooptop 

Not necessarily.  Shifts and rotates are  among  the worst performing  instructions of 
the 486, taking 2 to 3 cycles to execute.  Thus,  it takes 2 cycles  to rotate the skip  value 
into CX in Listing 13.5, and 2 more cycles to  rotate  it back to the  upper half  of ECX. 
I’d say four cycles  is a pretty steep  price to pay, especially considering  that a MOV to 
or from memory takes  only one cycle.  Basically, using ROR to access a 1 &bit  value in 
the  upper half  of a 16-bit register is a pretty marginal technique, unless for some 
reason you can’t access memory at all (for example, if you’re using BP  as a working 
register, temporarily making the stack frame inaccessible). 
On  the 386, ROR was the only way to split a 32-bit register into two 16-bit registers. 
On  the 486,  however, BSWAP can not only do  the  job,  but can do it better, because 
BSWAP executes in just  one cycle. BSWAP has the  added benefit of not affecting any 
flags,  unlike ROR. With  BSWAP-based code like that in Listing  13.6, the  upper 16 bits  of 
a register can be accessed  with  only 2 cycles  of overhead and without altering any 
flags, making the  technique of packing two 16-bit registers into  one 32-bit register 
much  more useful. 

LISTING  13.6  11  3-6.ASM 
mov c x . [ i n i t i a l s k i p l  
bswap  ecx   :pu t   sk ip   va lue  i n  u p p e r   h a l f  o f  ECX 
mov c x . 1 0 0   : p u t   l o o p   c o u n t   i n  C X  

1 oop top :  

bswap  ecx :make s k i p   v a l u e   w o r d   a c c e s s i b l e   i n  C X  
add   bx .cx   : sk ip  BX ahead 
i n c   c x   : s e t   n e x t   s k i p   v a l u e  
b s w a p   e c x   : p u t   l o o p   c o u n t   i n  C X  
dec   cx   :count  down l o o p  
j n z   l o o p t o p  

Pushing and Popping Memory 
Pushing or  popping a memory location, as in PUSH WORD F’TR [BX] or POP 
[MemVar],  is a compact, easy  way to get a value onto  or off  of the stack,  especially 
when pushing  parameters  for calling a Gcompatible  function. However, on a 486, 
these are unattractive instructions from a performance perspective. Pushing a memory 
location takes four cycles;  by contrast, loading a memory location into a register 
takes  only one cycle, and pushing a register takes just 1 more cycle, for a total of two 
cycles. Therefore, 
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mov ax,  [bxl 
push ax 

is  twice  as  fast  as 

p u s h  word p t r  [bxl 

and  the only  cost is that  the previous contents of AX are destroyed. 
Likewise, popping a memory location takes  six  cycles, but  popping a register and 
writing it  to  memory takes  only two cycles combined.  The i486 Microprocessor 
Programmer’s Refeen,ce Manual lists a 4cycle execution time for  popping a register, 
but pay that no mind;  popping a register takes  only 1 cycle. 
Why  is it that such a convenient operation as pushing or popping memory is so slow? 
The rule on the 486 is that simple operations, which  can  be executed in a single cycle 
by the 486’s MSG core, are fast;  whereas  complex operations, which  must be carried 
out in microcode just as  they  were on the 386, are almost  all  relatively slow.  Slow, 
complex operations include all the string instructions except REP MOVS, as  well  as 
XLAT, LOOP, and, of course, PUSH mem and POP mem. 

Wheneverpossible, try to  use  the 486 b l-cycle instructions, including MOV, ADD, p SUB,  CMP, ADC, SBB,  XOR, AND, OR, TEST, LEA, and PUSH reg and POP 
reg. These instructions have  an added benefit in that  it b often possible to rear- 
range  them for maximum pipeline efficiency,  as  is  the case with  Terje b optimization 
described earlier in this chapter. 

Optimal 1 -Bit Shifts and Rotates 
On a 486, the n-bit forms of the shift and rotate instructions-as in ROR AX,2 and 
SHL BX,9-are  P-cycle instructions, but  the 1-bit forms-as in RORAX,l and SHL 
BX,l-are 3cycle instructions. Go figure. 
Assemblers default to  the  l-bit instruction for  l-bit shifts and rotates. That’s not  un- 
reasonable since the  l-bit  form is a byte shorter  and is just as  fast  as the n-bit forms 
on a 386 and faster on a 286, and  the n-bit form doesn’t even  exist on  an 8088. In a 
really  critical loop, however,  it might be worth hand-assembling the n-bit form of a 
single-bit  shift or rotate in order to save that cycle. The easiest way to do this is to 
assemble a 2-bit form of the desired instruction, as in SHLAX,2, then look at  the  hex 
codes that  the assembler generates and use DB to  insert  them in your program  code, 
with the value two replaced with the value one. For example, you could  determine 
that SHL  AX,2 assembles  to the bytes OClH OEOH 002H, either by looking at  the 
disassembly in a debugger or by having the assembler generate a listing  file. You 
could  then  insert  the n-bit  version  of SHL AX,1 in your code as  follows: 

mov ax.1 
db Oclh.  OeOh.  OOlh 
mov dx.ax 
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At the  end of this sequence, DXwill contain 2, and  the fast n-bit version of SHLAX,l 
will have executed. If you  use  this approach,  I’d  recommend using a macro,  rather 
than sticking DBs in the middle of your code. 
Again,  this technique is advantageous only on a 486. It also doesn’t apply to RCL and 
RCR, where  you  definitely  want  to  use the 1-bit  versions  whenever  you can, because 
the n-bit  versions are horrendously slow. But if you’re  optimizing for the 486,  these 
tidbits  can save a few critical cycles-and Lord knows that if you’re  optimizing for the 
486-that  is,  if  you need even more performance  than you get from unoptimized code 
on a 486-you almost  certainly need all the speed you  can  get. 

32-Bit Addressing Modes 
The 386 and 486 both  support 32-bit addressing modes, in which  any register may 
serve  as the base memory addressing register, and almost any register may serve  as 
the potentially  scaled index register.  For example, 

rnov al.BaseTableCecx+edx*41 

uses a perfectly  valid  32-bit  address,  with the byte  accessed  being the one at the offset in 
DS pointed to by the sum of EDX times 4 plus the offset  of BaseTable plus ECX. This is 
a very  powerful  memory  addressing  scheme,  far  superior  to  8088style 1 &bit addressing, 
but it’s not without its quirks and costs, so let’s  take a quick look at 32-bit addressing. 
(By the way, 32-bit addressing is not limited to  protected  mode; 32-bit instructions 
may be used in real mode,  although  each instruction that uses  32-bit addressing 
must have an address-size prefix byte, and  the presence of a prefix byte  costs a cycle 
on a 486.) 
Any register may serve  as the base  register component of an address. Any register 
except ESP  may also  serve  as the  index register,  which can be scaled by 1, 2, 4, or 8. 
(Scaling  is  very handy  for performing lookups  in  arrays and tables.) The same  register 
may  serve  as both base and index  register,  except  for ESP,  which can  only  be the base. 
Incidentally, it makes  sense that ESP can’t be scaled; ESP presumably always points 
to a valid  stack, and I can’t think of  any reason you’d  want to use the stack pointer 
times 2, 4, or 8 in an address. ESP  is,  by its nature, a base rather  than  index  pointer. 
That’s all there is to the functionality of  32-bit addressing; it’s  very simple, much 
simpler than 16-bit addressing, with  its  sharply limited memory addressing register 
combinations. The costs  of  32-bit addressing are a bit more subtle. The only perfor- 
mance cost (apart from the  aforementioned l-cycle  penalty for using  32-bit  addressing 
in real mode) is a 1-cycle penalty imposed for using an  index register. In this context, 
you  use an  index register  when  you  use a register  that’s  scaled, or when you  use the 
sum of two registers to  point to  memory. MOV BL,[EBX*2] uses an  index register 
and takes an  extra cycle,  as does MOV  CL,[EAX+EDX];  MOV  CL,[EAX+lOOH] is not 
indexed, however. 
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The  other cost of  32-bit addressing is in instruction size.  Old-style  16-bit addressing 
usually (except  in a few special  cases)  uses one extra  byte,  which  Intel  calls the Mod-R/M 
byte,  which is placed immediately after each instruction’s opcode  to describe the 
memory  addressing mode, plus 1  or 2 optional bytes  of addressing  displacement-that 
is, a constant value  to add  into  the address. In many  cases,  32-bit addressing contin- 
ues to use the Mod-R/M  byte, albeit with a different  interpretation; in these cases, 
32-bit addressing is no larger than 16-bit addressing, except when a 32-bit  displace- 
ment is  involved.  For example, MOV A L ,  [EBX] is a 2-byte instruction; MOV A L ,  
[EBX+lOH] is a 3byte instruction; and MOVAL,  [EBX+10000H] is a &byte instruction. 

Note  that 1 and  4-byte  displacements, but  not 2-byte  displacements, are supported p for  32-bit addressing. Code  size can  be  greatly improved by keeping stack  frame 
variables within 128 bytes of EBR and variables in pointed-to structures within 127 
bytes of the start of the structure, so that displacements can be 1 rather than 4 bytes. 

However,  because  32-bit addressing supports many more addressing combinations 
than 16-bit addressing, the Mod-R/M  byte can’t describe  all the combinations. There- 
fore, whenever an  index register (as described above) is involved, a second byte, the 
SIB byte,  follows the Mod-R/M  byte to provide additional address information. Con- 
sequently,  whenever  you  use a scaled memory addressing register or use the sum of 
two registers  to point  to memory,  you  automatically add 1 cycle and 1 byte  to that 
instruction. This is not to say that you shouldn’t use index registers  when they’re 
needed,  but if you find yourself  using them inside key loops,  you should see if  it’s 
possible  to  move the  index calculation outside the  loop as, for  example, in a loop 
like  this: 

LoopTop: 
add  ax,DataTable[ebx*21 
i n c   e b x  
dec  cx 
j n z  LoopTop 

You could change this to  the following for  greater  performance: 

add  ebx.ebx  :ebx*2 

add  ax.DataTable[ebx l  
add  ebxX.2 
dec   cx  
j n z  LoopTop 
s h r  ebx.1  :ebx*2/2 

LoopTop: 

I’ll end this chapter with two more quirks of 32-bit addressing. First,  as  with l6bit  
addressing, addressing that uses EBP  as a base register both accesses the SS segment 
by default and always has a displacement of at least 1 byte. This reflects the  common 
use of  EBP to address a stack frame, but is worth keeping in mind if you should 
happen  to use EBP to address non-stack  memory. 
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Lastly,  as I  mentioned, ESP cannot  be scaled. In fact, ESP cannot  be  an  index regis- 
ter; it must be a base register. Ironically,  however, ESP is the  one register that  cannot 
be used to address memory without the  presence of an SIB byte,  even if it’s used 
without an  index register. This is an  outcome of the way in which the SIB byte  ex- 
tends the capabilities of the Mod-R/M  byte, and there’s  nothing to be done  about it, 
but it’s at least worth noting  that ESP-based, non-indexed addressing makes for in- 
structions  that  are  a byte larger than  other non-indexed addressing (but  not any 
slower; there’s no l-cycle penalty for using ESP as a base register) on  the 486. 
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