

Other Hazards of the High End
nt of American schoolchildren are ignorant of 92
y daughter, though. We recently visited historical

iconderoga, and she’s now 97 percent aware of a
ge: that the basic uniform for soldiers in those

ear, plus a hat so that no one could complain
es. Ha! Just kidding! Actually, what she learned
idence if a cannonball actually hit anything it
nsidering the lack of rifling, precision parts,
t off three cannons; the closest they came to
s only because the wind helped. I think the
lead in the air that some of it was bound to

hit something; preferably, but not necessarily, the enemy.
Nowadays, of course, we have automatic weapons that allow a teenager to
singlehandedly defeat the entire U.S. Army, not to mention so-called “smart” bombs,
which are smart in the sense that they can seek out and empty a taxpayer’s wallet
without being detected by radar. There’s an obvious lesson here about progress,
which I leave you to deduce for yourselves.
Here’s the same lesson, in another form. Ten years ago, we had a slow processor, the
8088, for which it was devilishly hard to optimize, and for which there was no good
optimization documentation available. Now we have a processor, the 486, that’s 50 to

249

pipelines and other hazards of the high end

100 times faster than the 8088-and for which there is no good optimization docu-
mentation available. Sure, Intel provides a few tidbits on optimization in the back of
the i486 Microprocessor Programmer’s Reference Manual, but, as I discussed in Chapter
12, that information is both incomplete and not entirely correct. Besides, most as-
sembly language programmers don’t bother to read Intel’s manuals (which are
extremely informative and well done, but only slightly more fun to read than the
phone book), and go right on programming the 486 using outdated 8088 optimiza-
tion techniques, blissfully unaware of a new and heavily mutated generation of
cycle-eaters that interact with their code in ways undreamt of even on the 386.
For example, consider how Terje Mathisen doubled the speed of his wordcounting
program on a 486 simply by shuffling a couple of instructions.

486 Pipeline Optimization
I’ve mentioned Terje Mathisen in my writings before. Terje is an assembly language
programmer extraordinaire, and author of the incredibly fast publicdomain word-
counting program WC (which comes complete with source code; well worth a look,
if you want to see what real4 fast code looks like). Terje’s a regular participant in the
ibm.pc/fast.code topic on Bix. In a thread titled “486 Pipeline Optimization, or
TANSTATFC (There Ain’t No Such Thing As The Fastest Code),” he detailed the
following optimization to WC, perhaps the best example of 486 pipeline optimiza-
tion I’ve yet seen.
Terje’s inner loop originally looked something like the code in Listing 13.1. (I’ve taken a
few liberties for illustrative purposes.) Of course, Terje unrolls this loop a few times
(128 times, to be exact). By the way, in Listing 13.1 you’ll notice that Terje counts not
only words but also lines, at a rate of three instructions for every two characters!

LISTING 1 3.1 11 3- 1 .ASM
mov di.[bp+OFFSl : g e t t h e n e x t p a i r o f c h a r a c t e r s
mov b l , [d i 1 : g e t t h e s t a t e v a l u e f o r t h e p a i r
add dx. [bx+8000hl :increment word and l i n e c o u n t

: a p p r o p r i a t e l y f o r t h e p a i r

Listing 13.1 looks as tight as it could be, with just two one-cycle instructions, one two-
cycle instruction, and no branches. It is tight, but those three instructions actually
take a minimum of 8 cycles to execute, as shown in Figure 13.1. The problem is that
DI is loaded just before being used to address memory, and that costs 2 cycles be-
cause it interrupts the 486’s internal instruction pipeline. Likewise, BX is loadedjust
before being used to address memory, costing another two cycles. Thus, this loop
takes twice as long as cycle counts would seem to indicate, simply because two regis-
ters are loaded immediately before being used, disrupting the 486’s pipeline.
Listing 13.2 shows Terje’s immediate response to these pipelining problems; he simply
swapped the instructions that load DI and BL. This one change cut execution time
per character pair from eight cycles to five cycles! The load of BL is now separated by

250 Chapter 13

M O V D I , [BP+OFFS] 1 -cycle execution time

1
M O V B L . C D I 1

1 -cycle execution time,
2-cycle pipeline penalty because
Dl was loaded by the previous
instruction and is used to
address memory by this
instruction

v 2-cycle execution time,
ADD DX,[BX+8000Hl 2-cycle pipeline penalty because

BX was loaded by the previous
instruction and is used to
address memory by this
instruction

M O V DI . [BP+OFFSl 1 cycle execution time

Cycle-eaters in the original WC.
Figure 1 3.1

one instruction from the use of BX to address memory, so the pipeline penalty is
reduced from two cycles to one cycle. The load of DI is also separated by one instruc-
tion from the use of DI to address memory (remember, the loop is unrolled, so the
last instruction is followed by the first instruction), but because the intervening in-
struction takes two cycles, there’s no penalty at all.

Remembel; pipeline penalties diminish with increasing number of cycles, not in- p structions, between the pipeline disrupter and the potentially aficted instruction.

LISTING 13.2 11 3-2.ASM
mov b l , [d i 1 ; g e t t h e s t a t e v a l u e f o r t h e p a i r
mov di.[bp+OFFS] ; g e t t h e n e x t p a i r o f c h a r a c t e r s
add dx.[bx+8000h] : i n c r e m e n t w o r d a n d l i n e c o u n t

; a p p r o p r i a t e l y f o r t h e p a i r

At this point, Terje had nearly doubled the performance of this code simply by mov-
ing one instruction. (Note that swapping the instructions also made it necessary to
preload DI at the start of the loop; Listing 13.2 is not exactly equivalent to Listing
13.1.) I’ll let Terje describe his next optimization in his own words:

Aiming the 486 251

‘When I looked closely as this, I realized that the two cycles for the final ADD is just
the sum of 1 cycle to load the data from memory, and 1 cycle to add it to DX, so the
code could just as well have been written as shown in Listing 13.3. The final break-
through came when I realized that by initializing AX to zero outside the loop, I
could rearrange it as shown in Listing 13.4 and do the final ADD DX- after the
loop. This way there are two single-cycle instructions between the first and the fourth
line, avoiding all pipeline stalls, for a total throughput of two cycles/char.”

LISTING 13.3 11 3-3.ASM
mov b l , [d i 1 ; g e t t h e s t a t e v a l u e f o r t h e p a i r
mov di.[bp+OFFSl ; g e t t h e n e x t p a i r o f c h a r a c t e r s
mov ax. [bx+8000hl ; i n c r e m e n t w o r d a n d l i n e c o u n t
add dx,ax ; a p p r o p r i a t e l y f o r t h e p a i r

LISTING 13.4 11 3-4.ASM
mov b l , [d i 1 ; g e t t h e s t a t e v a l u e f o r t h e p a i r
mov di.[bp+OFFSl ; g e t t h e n e x t p a i r o f c h a r a c t e r s
add dx,ax ; i n c r e m e n t w o r d a n d l i n e c o u n t

mov a x . [b x + 8 0 0 0 h l ; g e t i n c r e m e n t s f o r n e x t t i m e
; a p p r o p r i a t e l y f o r t h e p a i r

I’d like to point out two fairly remarkable things. First, the single cycle that Terje saved in
Listing 13.4 sped up his entire word-counting engine by 25 percent or more; Listing
13.4 is fully twice as fast as Listing 13.1-all the result of nothing more than shifting
an instruction and splitting another into two operations. Second, Terje’s word-count-
ing engine can process more than 16 million characters per second on a 486/33.
Clever 486 optimization can pay off big. QED.

BSWAP: More Useful Than You Might Think
There are only 3 non-system instructions unique to the 486. None is earthshaking,
but they have their uses. Consider BSWAP. BSWAP does just what its name implies,
swapping the bytes (not bits) of a 32-bit register from one end of the register to the
other, as shown in Figure 13.2. (BSWAP can only work with 32-bit registers; memory
locations and l6bit registers are not valid operands.) The obvious use of BSWAP is
to convert data from Intel format (least significant byte first in memory, also called
Zittb endian) to Motorola format (most significant byte first in memory, or big endian),
like so:

1 odsd
bswap
s t o s d

BSWAP can also be useful for reversing the order of pixel bits from a bitmap so that
they can be rotated 32 bits at a time with an instruction such as ROR =,I. Intel’s
byte ordering for multiword values (least-significant byte first) loads pixels in the
wrong order, so far as word rotation is concerned, but BSWAP can take care of that.

252 Chapter 13

EAX before x ,
BSWAP 0 x 3 4 0 x 7 8 0 x 5 6

Bit 3 1 Bit 0

EAX after x
BSWAP 0 x 5 6 0 x 1 2 0 x 3 4

Bit 3 1 Bit 0

BSWAP in operation.
Figure 13.2

As it turns out, though, BSWAP is also useful in an unexpected way, having to do with
making efficient use of the upper half of 32-bit registers. As any assembly language
programmer knows, the x86 register set is too small; or, to phrase that another way, it
sure would be nice if the register set were bigger. As any 386/486 assembly language
programmer knows, there are many cases in which 16 bits is plenty. For example, a
16-bit scan-line counter generally does the trick nicely in a video driver, because
there are very few video devices with more than 65,535 addressable scan lines. Com-
bining these two observations yields the obvious conclusion that it would be great if
there were some way to use the upper and lower 16 bits of selected 386 registers as
separate 16-bit registers, effectively increasing the available register space.
Unfortunately, the x86 instruction set doesn’t provide any way to work directly with
only the upper half of a 32-bit register. The next best solution is to rotate the register
to give you access in the lower 16 bits to the half you need at any particular time, with
code along the lines of that in Listing 13.5. Having to rotate the 16-bit fields into
position certainly isn’t as good as having direct access to the upper half, but surely
it’s better than having to get the values out of memory, isn’t it?

LISTING 13.5 11 3-5.ASM
mov c x , [i n i t i a l s k i p l
s h l e c x . 1 6 ; p u t s k i p v a l u e i n u p p e r h a l f o f E C X
mov c x , l O O ; p u t l o o p c o u n t i n C X

Aiming the 486 253

1 ooptop:

r o r e c x . 1 6 :make s k i p v a l u e w o r d a c c e s s i b l e i n C X
add bx .cx : sk ip BX ahead
i n c c x : s e t n e x t s k i p v a l u e
r o r ecx .16 :pu t 1 oop count i n C X
dec cx :count down l o o p
j n z 1 ooptop

Not necessarily. Shifts and rotates are among the worst performing instructions of
the 486, taking 2 to 3 cycles to execute. Thus, it takes 2 cycles to rotate the skip value
into CX in Listing 13.5, and 2 more cycles to rotate it back to the upper half of ECX.
I’d say four cycles is a pretty steep price to pay, especially considering that a MOV to
or from memory takes only one cycle. Basically, using ROR to access a 1 &bit value in
the upper half of a 16-bit register is a pretty marginal technique, unless for some
reason you can’t access memory at all (for example, if you’re using BP as a working
register, temporarily making the stack frame inaccessible).
On the 386, ROR was the only way to split a 32-bit register into two 16-bit registers.
On the 486, however, BSWAP can not only do the job, but can do it better, because
BSWAP executes in just one cycle. BSWAP has the added benefit of not affecting any
flags, unlike ROR. With BSWAP-based code like that in Listing 13.6, the upper 16 bits of
a register can be accessed with only 2 cycles of overhead and without altering any
flags, making the technique of packing two 16-bit registers into one 32-bit register
much more useful.

LISTING 13.6 11 3-6.ASM
mov c x . [i n i t i a l s k i p l
bswap ecx :pu t sk ip va lue i n u p p e r h a l f o f ECX
mov c x . 1 0 0 : p u t l o o p c o u n t i n C X

1 oop top :

bswap ecx :make s k i p v a l u e w o r d a c c e s s i b l e i n C X
add bx .cx : sk ip BX ahead
i n c c x : s e t n e x t s k i p v a l u e
b s w a p e c x : p u t l o o p c o u n t i n C X
dec cx :count down l o o p
j n z l o o p t o p

Pushing and Popping Memory
Pushing or popping a memory location, as in PUSH WORD F’TR [BX] or POP
[MemVar], is a compact, easy way to get a value onto or off of the stack, especially
when pushing parameters for calling a Gcompatible function. However, on a 486,
these are unattractive instructions from a performance perspective. Pushing a memory
location takes four cycles; by contrast, loading a memory location into a register
takes only one cycle, and pushing a register takes just 1 more cycle, for a total of two
cycles. Therefore,

254 Chapter 13

mov ax, [bxl
push ax

is twice as fast as

p u s h word p t r [bxl

and the only cost is that the previous contents of AX are destroyed.
Likewise, popping a memory location takes six cycles, but popping a register and
writing it to memory takes only two cycles combined. The i486 Microprocessor
Programmer’s Refeen,ce Manual lists a 4cycle execution time for popping a register,
but pay that no mind; popping a register takes only 1 cycle.
Why is it that such a convenient operation as pushing or popping memory is so slow?
The rule on the 486 is that simple operations, which can be executed in a single cycle
by the 486’s MSG core, are fast; whereas complex operations, which must be carried
out in microcode just as they were on the 386, are almost all relatively slow. Slow,
complex operations include all the string instructions except REP MOVS, as well as
XLAT, LOOP, and, of course, PUSH mem and POP mem.

Wheneverpossible, try to use the 486 b l-cycle instructions, including MOV, ADD, p SUB, CMP, ADC, SBB, XOR, AND, OR, TEST, LEA, and PUSH reg and POP
reg. These instructions have an added benefit in that it b often possible to rear-
range them for maximum pipeline efficiency, as is the case with Terje b optimization
described earlier in this chapter.

Optimal 1 -Bit Shifts and Rotates
On a 486, the n-bit forms of the shift and rotate instructions-as in ROR AX,2 and
SHL BX,9-are P-cycle instructions, but the 1-bit forms-as in RORAX,l and SHL
BX,l-are 3cycle instructions. Go figure.
Assemblers default to the l-bit instruction for l-bit shifts and rotates. That’s not un-
reasonable since the l-bit form is a byte shorter and is just as fast as the n-bit forms
on a 386 and faster on a 286, and the n-bit form doesn’t even exist on an 8088. In a
really critical loop, however, it might be worth hand-assembling the n-bit form of a
single-bit shift or rotate in order to save that cycle. The easiest way to do this is to
assemble a 2-bit form of the desired instruction, as in SHLAX,2, then look at the hex
codes that the assembler generates and use DB to insert them in your program code,
with the value two replaced with the value one. For example, you could determine
that SHL AX,2 assembles to the bytes OClH OEOH 002H, either by looking at the
disassembly in a debugger or by having the assembler generate a listing file. You
could then insert the n-bit version of SHL AX,1 in your code as follows:

mov ax.1
db Oclh. OeOh. OOlh
mov dx.ax

Aiming the 486 255

At the end of this sequence, DXwill contain 2, and the fast n-bit version of SHLAX,l
will have executed. If you use this approach, I’d recommend using a macro, rather
than sticking DBs in the middle of your code.
Again, this technique is advantageous only on a 486. It also doesn’t apply to RCL and
RCR, where you definitely want to use the 1-bit versions whenever you can, because
the n-bit versions are horrendously slow. But if you’re optimizing for the 486, these
tidbits can save a few critical cycles-and Lord knows that if you’re optimizing for the
486-that is, if you need even more performance than you get from unoptimized code
on a 486-you almost certainly need all the speed you can get.

32-Bit Addressing Modes
The 386 and 486 both support 32-bit addressing modes, in which any register may
serve as the base memory addressing register, and almost any register may serve as
the potentially scaled index register. For example,

rnov al.BaseTableCecx+edx*41

uses a perfectly valid 32-bit address, with the byte accessed being the one at the offset in
DS pointed to by the sum of EDX times 4 plus the offset of BaseTable plus ECX. This is
a very powerful memory addressing scheme, far superior to 8088style 1 &bit addressing,
but it’s not without its quirks and costs, so let’s take a quick look at 32-bit addressing.
(By the way, 32-bit addressing is not limited to protected mode; 32-bit instructions
may be used in real mode, although each instruction that uses 32-bit addressing
must have an address-size prefix byte, and the presence of a prefix byte costs a cycle
on a 486.)
Any register may serve as the base register component of an address. Any register
except ESP may also serve as the index register, which can be scaled by 1, 2, 4, or 8.
(Scaling is very handy for performing lookups in arrays and tables.) The same register
may serve as both base and index register, except for ESP, which can only be the base.
Incidentally, it makes sense that ESP can’t be scaled; ESP presumably always points
to a valid stack, and I can’t think of any reason you’d want to use the stack pointer
times 2, 4, or 8 in an address. ESP is, by its nature, a base rather than index pointer.
That’s all there is to the functionality of 32-bit addressing; it’s very simple, much
simpler than 16-bit addressing, with its sharply limited memory addressing register
combinations. The costs of 32-bit addressing are a bit more subtle. The only perfor-
mance cost (apart from the aforementioned l-cycle penalty for using 32-bit addressing
in real mode) is a 1-cycle penalty imposed for using an index register. In this context,
you use an index register when you use a register that’s scaled, or when you use the
sum of two registers to point to memory. MOV BL,[EBX*2] uses an index register
and takes an extra cycle, as does MOV CL,[EAX+EDX]; MOV CL,[EAX+lOOH] is not
indexed, however.

256 Chapter 13

The other cost of 32-bit addressing is in instruction size. Old-style 16-bit addressing
usually (except in a few special cases) uses one extra byte, which Intel calls the Mod-R/M
byte, which is placed immediately after each instruction’s opcode to describe the
memory addressing mode, plus 1 or 2 optional bytes of addressing displacement-that
is, a constant value to add into the address. In many cases, 32-bit addressing contin-
ues to use the Mod-R/M byte, albeit with a different interpretation; in these cases,
32-bit addressing is no larger than 16-bit addressing, except when a 32-bit displace-
ment is involved. For example, MOV A L , [EBX] is a 2-byte instruction; MOV A L ,
[EBX+lOH] is a 3byte instruction; and MOVAL, [EBX+10000H] is a &byte instruction.

Note that 1 and 4-byte displacements, but not 2-byte displacements, are supported p for 32-bit addressing. Code size can be greatly improved by keeping stack frame
variables within 128 bytes of EBR and variables in pointed-to structures within 127
bytes of the start of the structure, so that displacements can be 1 rather than 4 bytes.

However, because 32-bit addressing supports many more addressing combinations
than 16-bit addressing, the Mod-R/M byte can’t describe all the combinations. There-
fore, whenever an index register (as described above) is involved, a second byte, the
SIB byte, follows the Mod-R/M byte to provide additional address information. Con-
sequently, whenever you use a scaled memory addressing register or use the sum of
two registers to point to memory, you automatically add 1 cycle and 1 byte to that
instruction. This is not to say that you shouldn’t use index registers when they’re
needed, but if you find yourself using them inside key loops, you should see if it’s
possible to move the index calculation outside the loop as, for example, in a loop
like this:

LoopTop:
add ax,DataTable[ebx*21
i n c e b x
dec cx
j n z LoopTop

You could change this to the following for greater performance:

add ebx.ebx :ebx*2

add ax.DataTable[ebx l
add ebxX.2
dec cx
j n z LoopTop
s h r ebx.1 :ebx*2/2

LoopTop:

I’ll end this chapter with two more quirks of 32-bit addressing. First, as with l6bit
addressing, addressing that uses EBP as a base register both accesses the SS segment
by default and always has a displacement of at least 1 byte. This reflects the common
use of EBP to address a stack frame, but is worth keeping in mind if you should
happen to use EBP to address non-stack memory.

Aiming the 486 257

Lastly, as I mentioned, ESP cannot be scaled. In fact, ESP cannot be an index regis-
ter; it must be a base register. Ironically, however, ESP is the one register that cannot
be used to address memory without the presence of an SIB byte, even if it’s used
without an index register. This is an outcome of the way in which the SIB byte ex-
tends the capabilities of the Mod-R/M byte, and there’s nothing to be done about it,
but it’s at least worth noting that ESP-based, non-indexed addressing makes for in-
structions that are a byte larger than other non-indexed addressing (but not any
slower; there’s no l-cycle penalty for using ESP as a base register) on the 486.

	next:
	home:
	previous:

